Coordination complexes of *C*-nitroso compounds. A ¹³C NMR study of some complexes of platinum with *C*-nitroso compounds

Alan S.F. Boyd, Gavin Browne, Brian G. Gowenlock* and Paul McKenna

Department of Chemistry, Heriot-Watt University, Edinburgh. EH14 4AS (Great Britain) (Received November 2nd, 1987)

Abstract

Three complexes of platinum with C-nitroso compounds have been studied by 13 C NMR spectroscopy. It has been shown that in all three cases there is a pronounced shift to higher frequency of C-NO and that for the two cases where this involves the t-butyl group the Pt-C coupling is evident. It is noted that this effect is stronger than for the coordination of some other ligands to platinum.

Introduction

A small number of complexes of C-nitroso compounds with transition metals have been prepared and subjected to structural investigations using X-ray, IR and ¹H NMR techniques. As part of a systematic study of ¹³C NMR spectra of C-nitroso compounds [1] we have extended our investigations to a number of transition metal complexes. The series of platinum complexes prepared by Mansuy et al. [2] is of particular interest in that a coordination through nitrogen is established. With the single exception of η^5 -cyclopentadienyldicarbonylmanganese nitrosobenzene [3] there have been no ¹³C NMR studies of nitroso compound complexes for cases where there are data for the free ligand. There is virtually no published information on the ¹³C NMR spectra of nitrosoalkanes other than for some ring compounds containing *cis*-N₂O₂ groups [4] and some other *trans*-N₂O₂containing molecules [6,7]. We have a wide range of additional data awaiting publication [8].

Experimental

Dimeric 2-methyl-2-nitrosopropane was prepared by Stowell's method [9]. The compounds $[PtCl_3(RNO)]^- K^+ (R = t-Bu,Ph)$ and $\{PtCl_2[(CH_3)_3CNO]_2\}$ were prepared by Mansuy's method [2]. The ¹³C NMR spectra were recorded with a Bruker WP 200 spectrometer operating at 50.32MHz with acetone- d_6 as solvent for the ionic complexes and CDCl₃ for the covalent complexes.

Results

The ¹³C data are listed in Table 1 and some features are illustrated in Fig. 1.

Discussion

Table 1

The crystal structure of the bis-(2-methyl-2-nitrosopropane)platinum dichloride complex established by Mansuy et al. [2] clearly demonstrates that the two nitroso ligands are separate and equivalent and N coordinated, and also that the C-N bond is unusually long at 1.56(2) Å. This contrasts with other nitrosoalkane structures; e.g., the microwave spectroscopic data for gaseous CH₃NO (1.479 Å) and CF₃NO (1.512 Å) [10], and the X-ray data for C₂H₅NO \cdot CoCpPPh₃ (1.484 Å) [11] and for the dimer of 2-methyl-2-nitrosopropane (1.533 Å) [12].

There have been a number of correlations of spectroscopic parameters of C-nitroso compounds with their mode of coordination to the metal, and these focus

Compound	С	СН₃	C _{ipso}	C _o	C _m	C _P	J(Pt-C) (Hz)
(t-BuNO) ₂	76.52	25.11					
t-BuNO	96.4	23.05					
PtCl(t-BuNO) ₂	105.59	27.43					72.3
$(PtCl_3-t-BuNO)^- K^+$	105.39	27.51					85.1
(PtCl ₃ PhNO) ⁻ K ⁺			172.30	130.15 ^b	127.74 ^b	136.59	
PhNO "			166.1	120.9	129.4	135.5	

^a See ref. 1. ^b The assignment of o- and m- resonances may be reversed.

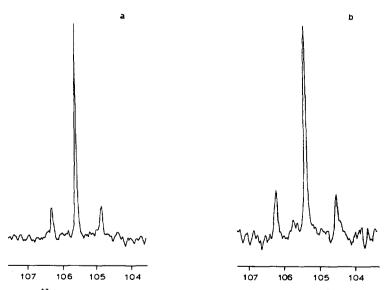


Fig. 1. ¹³C NMR spectrum of (a) $\{(CH_3)_3CNO\}_2PtCl_2$ and (b) $K^+[PtCl_3(CH_3)_3CNO]^-$ illustrating ¹⁹⁵Pt-C coupling at natural abundance. J(PtC) 72.3 (a) and 85.1 (b) Hz.

is a need to have full IR spectroscopic data, and the misleading assignment of $\nu(NO)$ at 1340–1350 cm⁻¹ due to Nakamoto and Rundle [15] should be superseded by the value of 1506 cm⁻¹ due to Lüttke [16] and confirmed by Strauss [17].

The simplicity of ¹³C NMR spectra and their interpretation results in a ready method for the study of coordination of *C*-nitroso compounds to metals. This is aided by the highly electronegative character of the NO group and the dominant character of the NO group in relation to the effect of *para*-substituents in nitrosobenzene [1], which make the assignment of *C*-NO relatively simple. The *trans*-dimeric N₂O₂ group is less electronegative than the monomer, and the ¹³C NMR spectrum is readily distinguished through temperature variation effects on the dimer/monomer equilibrium. Also there are as yet no published examples of coordination from the dimeric N₂O₂ group to transition metals.

It is noted that coordination through the nitrogen atom to the platinum is accompanied by a marked shift to higher frequency of the C-NO resonance of 9.2, 9.0 and 6.2 ppm and by shifts of the $(CH_3)_3C$ and ortho-C in the phenyl group. It is apparent that this effect may be specific to the transition metal to which coordination takes place and/or to the stereochemistry about the metal atom rather than to the manner of coordination, i.e. through the N atom of the ligand. In the case of the 2-methyl-2-nitrosopropane ligands there is clear evidence of Pt-C coupling. Consequently we can compare the behaviour of other ligands to Pt in cases in which ${}^{13}C$ NMR studies have been carried out. For the isonitrile complexes trans- $[PtCl(CNR)(PEt_3)_2]^+$ J(Pt-C) for the CNCR¹R²R³ falls in the range 15-27 Hz with shift to high frequency for alkyl carbons of 4-7 ppm [18]. The similar data for cis-[PtCl₃(CNR)PEt₃] are 18–27 Hz and 4–5 ppm [18]. The alkyl R group in $[NPr_{4}^{n}]$ [PtCl₂C(CO)] has J(Pt-C) in the 4-14 Hz range for the first C atom in the alkyl group after the immediately attached C [19]. In the series $(p-XC_sH_4N \rightarrow$ $Pt(Cl)_{2} \leftarrow L$ when $L = t-BuC \equiv C-t-Bu J(Pt-C)$ 15.7 Hz for the central C of the t-Bu group and for $L = PhCH=CH_2$ J(Pt-C) 36.4 Hz for the *ipso*-C of the phenyl group [20]. The origins of this coupling are not commented upon in the papers concerned, but it suggests that PtC coupling is a general phenomenon for the C atom attached to the atom of the group through which coordination occurs. The J(Pt-C) values for the two t-butyl compounds which we have investigated suggest a stronger coupling (72.3 and 85.1 Hz).

Further extensive studies of the use of 13 C NMR in assisting the establishment of the coordination mode of C-nitroso compounds to transition metals are in progress [21].

Acknowledgement

The authors acknowledge a research grant from SERC for the purchase of the NMR spectrometer, and helpful discussions with Professor G. Vasapollo.

References

- 1 B.M. Al-Tahou and B.G. Gowenlock, Rec. Trav. Chim. Pays Bas, 105 (1985) 253.
- 2 D. Mansuy, D. Dreme, J.C. Chottard and J. Guilhem, J. Organomet. Chem., 161 (1978) 207.
- 3 V.N. Setkina, S.P. Dolgova, D.V. Zagorevskii, V.F. Sizoi and D.N. Kursanov, Bull. Acad. Sci. USSR, Chem. Series, (1982) 1239.
- 4 J.P. Snyder, M.L. Heyman and E.N. Suciu, J. Org. Chem., 40 (1975) 1395.
- 5 F.D. Greene and K.E. Gilbert, J. Org. Chem., 40 (1975) 1409.
- 6 K.P. Klein, T.R. Demmin, B.C. Oxenrider, M.M. Rogic and M.T. Tetenbaum, J. Org. Chem., 44 (1977) 275.
- 7 Y.L. Chow, K.S. Pillay and H. Richard, Canad. J. Chem., 57 (1979) 2933.
- 8 B.M. Al-Tahou, B.G. Gowenlock and P. McKenna, unpublished data.
- 9 J.C. Stowell, J. Org. Chem., 36 (1971) 3055.
- 10 P.H. Turner and A.P. Cox, Chem. Phys. Lett., 39 (1976) 585.
- 11 R.G. Bergmann, J. Am. Chem. Soc., 105 (1983) 3922.
- 12 B.G. Gowenlock, K.J. McCullough and R.B. Manson, J. Chem. Soc. Perkin 2, submitted for publication.
- 13 G. Vasapollo, A. Sacco, C.F. Nobile, M.A. Pellinghelli and M. Lanfranchi, personal communication.
- 14 R. Kübler, W. Lüttke and S. Weckherlin, Z. Elektrochem., 64 (1960) 650.
- 15 K. Nakamoto and R.E. Rundle, J. Am. Chem. Soc., 78 (1956) 1113.
- 16 W. Lüttke, Z. Elektrochem., 61 (1957) 302.
- 17 G.M. Bradley and H.L. Strauss, J. Phys. Chem., 79 (1975) 1753.
- 18 B. Crociani and R.L. Richards, J. Organomet. Chem., 144 (1978) 85.
- 19 J. Browning, P.L. Coggin, R.J. Goodfellow, N.W. Hurst, L.G. Mallinson and M. Murray, J. Chem. Soc. Dalton, (1978) 872.
- 20 D.G. Cooper and J. Powell, Inorg. Chem., 16 (1977) 142.
- 21 B.G. Gowenlock and G. Vasapollo, to be submitted for publication.